Menofiya University
Faculty of Engineering
Shebin El-Kom
Second semester final exam
Academic Year: 2012-2013

Year: Third
Code : MPE322
Department: MPE
Subject: Numerical methods in MPE
Time Allowed: 3 hours
Date: 15 / 6 / 2013

Question (1)

(a) By using the recurrence formula, Write a computer code to compute $\partial^{3} f / \partial x^{3}$ with central finite difference technique at $\mathrm{x}=2$ when $f=2 \ln x$. Take $\Delta x=0.1$. Compare the result with analytical differentiation.
(8 marks)
(b) Prove that, there is a root lies between $\mathrm{x}=1$ and $\mathrm{x}=2$ for the following $x^{3}-0.5=0.8 x$
Find numerical the root by using false position method, then write a computer code to obtain this root. (8 Marks)
(c) By using Polynomial method, derive finite difference formula to represent $2^{\text {nd }}$ derivative, $1^{\text {nd }}$ order accuracy with backward FD technique. Consider expanding grid (9 marks)

Question (2)

(20 Marks)

(a) Starting with Taylor series, derive the $2^{\text {nd }}$ derivative central finite difference approximation with second order accuracy. Calculate the numerical and analytical values of this derivative for the following function and assign the relative numerical error \%
$f=5 e^{0.2 x} \quad$.take $\Delta x=0.01$
(8marks)
(b) The dissociation of chemical species A_{2} is as follows
$A_{2} \stackrel{K_{f}}{\Rightarrow} 2 A$
The rate of dissociation is represented by the following equation.
$\frac{d C_{A_{2}}}{d t}=-k_{f} C_{A_{2}}$
Where $C_{A_{2}}$ is the instantaneous concentration of species A_{2} in $\mathrm{mol} / \mathrm{l}$ and k_{f} is the forward reaction rate constant $=1 \times 10^{3} \mathrm{~s}^{-1}$.
If $A_{2}(0)=1$ write a program to calculate the time required to dissociate A_{2} to its half initial concentration.
Take step size equal to $1 \times 10^{-5} \mathrm{~s}$. Compare the results with analytical solution.
(12marks)

Question (3)

The ideal incompressible flow inside a rectangular chamber can be described by $\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}=0$, where ψ is the stream function. The flow enters the chamber from three ports each 0.3 m wide at a velocity of $2 \mathrm{~m} / \mathrm{s}$, as shown in the figure. The velocity distribution through the nozzle can be calculated from $u=\frac{\partial \psi}{\partial y}$ and $v=-\frac{\partial \psi}{\partial x}$, where u and v are the horizontal and vertical velocity component, respectively.
a. Evaluate the boundary conditions of this problem.
b. Describe the solution procedure of this equation using the line-Seidel method
c. Write a computer program for the solution procedure described in b.
d. If the pressure at the left port is 1 bar, calculate the pressure distribution within the chamber.

Question (4)

(20 Marks)

In pressurized-water nuclear reactor water flows in two-layer tube of inner diameter 3 cm at constant temperature of 900 K . The inner layer is made of steel having thermal diffusivity of $0.9 \mathrm{~m}^{2} / \mathrm{s}$ and has a thickness of 1 cm . The outer layer is made of concrete of thermal diffusivity of $0.3 \mathrm{~m}^{2} / \mathrm{s}$ and has a thickness of 5 cm , see the figure. The differential equation governs the heat transfer through the wall can be written as: $\frac{\partial T}{\partial t}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \alpha \frac{\partial T}{\partial r}\right)$
where, k is the local thermal conductivity of the wall. The temperature at the outer surface can be taken as 300 K . At the interface $(-k \partial T / \partial r)_{\text {steel }}=(k \partial T / \partial r)_{\text {concrete }}$. Where, k is the thermal conductivity. Use $\Delta r=0.2 \mathrm{~mm}$ for steel and $\Delta r=0.5 \mathrm{~mm}$ for concrete, Answer the following
a. Describe the solution procedure using Rechardson method
b. Show with some detailed how the temperature at the interface is calculated.
c. Draw a flowchart for the solution procedure.
d. Comment on the stability of this method.

